
2025/8/29 2025年日化協LRI研究報告会

ヒトiPS細胞由来肝細胞の 3次元凝集制御による 肝代謝機能の強化

横浜市立大学 小島伸彦

スフェロイドのデザイン

高分子を細胞と共に凝集させる技術 特許第6176770号, WO2016182022

創薬における動物実験の代替

NEWS . 29 MAY 2019

Genomics institute to close world-leading animal facility イギリス・サンガー研究所

Sanger's decision prompts questions among some scientists, who fear the UK centre could fall behind.

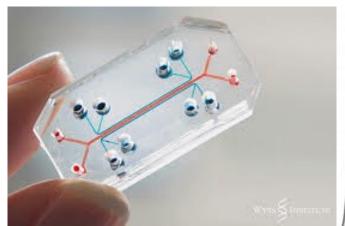
2021年9月に動物実験施設を閉鎖済

U.S. EPA to eliminate all mammal testing by 2035

By David Grimm | Sep. 10, 2019, 6:00 PM

環境保護庁

VOLUME 379 | ISSUE 6628 | 13 JAN 2023

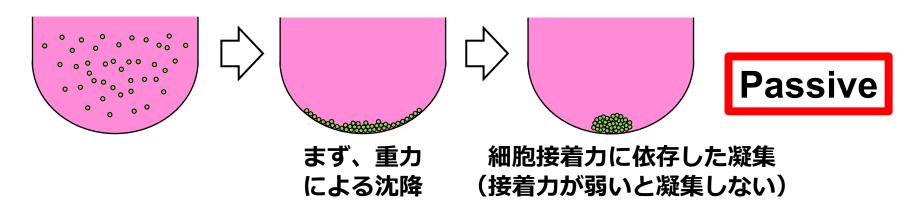

ANIMAL RESEARCH

FDA no longer has to require animal testing for new drugs

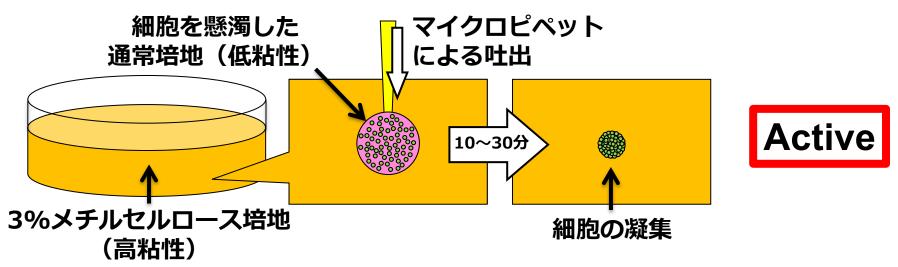
Agency can rely on animal-free alternatives before human trials

FDA Modernization Act 2.0 (FDA近代化法2.0)

Microphysiological Systems (MPS): 人体模倣システム



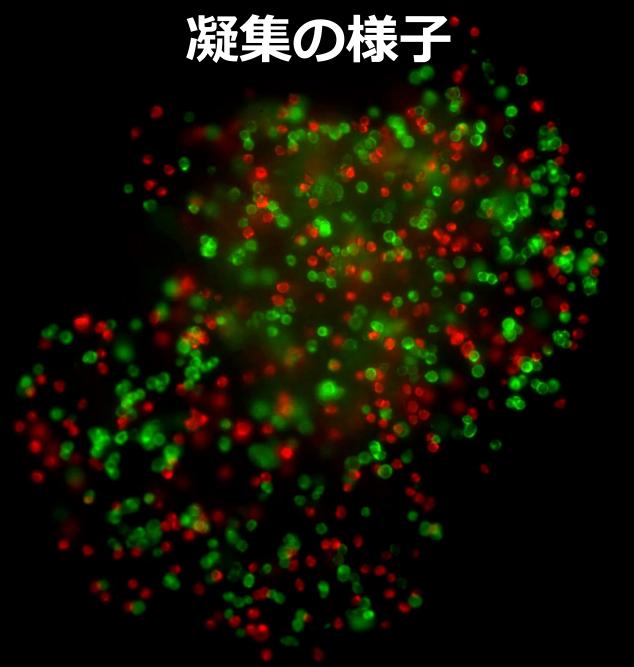
アジェンダ


- 1. 研究コンセプト
- 2. メチルセルロース法の紹介
- 3. hiPSC由来肝細胞の3次元培養
- 4. ユニークなスフェロイド

スフェロイドをactiveに作製する

・従来法(例えばU底96穴プレート利用)は細胞任せの方法

・我々が開発した方法は強制的に凝集形成



メチルセルロース法による細胞凝集

培地: 1 µl

細胞: 2000個

3% メチルセルロース培地

Kojima et al. Biomaterials (2012)

これまでに作製したスフェロイド

臓器・組織	細胞の種類	論文等
肝臓	ヒトiPSC-hep	J Biosci Bioeng, 2023
	Hep G2+ゲル ビーズ	Sensor Actuat B-Chem, 2014 Cells, 2019
	マウス胎仔肝細 胞+ゲルビーズ	Regen Ther, 2016
	Hep G2	Sensor Actuat A-Phys, 2017
	Hep G2+ECM	Sci Rep, 2020
	Hep G2+ポンプ	TERMIS-WC 2024
	HepaRG	Sci Adv, 2024
	HuH-7+ゲル ビーズ	TERMIS-WC 2024
	ヒト初代肝細胞	未発表
	TMNK-1(ヒト類 洞内皮細胞株)	未発表
	MMNK-1(ヒト 胆管由来細胞株)	未発表
骨髄	マウス骨髄細胞	Regen Ther, 2016
	マウス骨髄由来 間葉系幹細胞	未発表
	THP-1	未発表

臓器・組織	細胞の種類	論文等
加政石子 • 市土市政	和ルプクノイ里大貝	調义守
膵島	マウス初代膵島 細胞	TERMIS-EU 2019
	MIN6-m9+ aTC1.6	Transplant Proc, 2014 Regen Ther, 2016
脳	ヒト不死化アス トロサイト	Bioengineering, 2023
	U87-MG(グリオ ブラストーマ)	未発表
腎臓	RPTEC	細胞アッセイ研究会 2018
	HEK293T	未発表
精巣	ラット新生仔セ ルトリ細胞等	ISBF 2018
血管	HUVEC	日本動物実験代替法学会第 35回大会 2022
腸	HCT116	未発表
口腔	ヒト歯髄由来間 葉系幹細胞	未発表
皮膚	ヒトケラチノサ イト	未発表
	ヒトメラノ サ イ ト	未発表
結合組織	NIH3T3	未発表

アジェンダ

- 1. 研究コンセプト
- 2. メチルセルロース法の紹介
- 3. hiPSC由来肝細胞の3次元培養
- 4. ユニークなスフェロイド

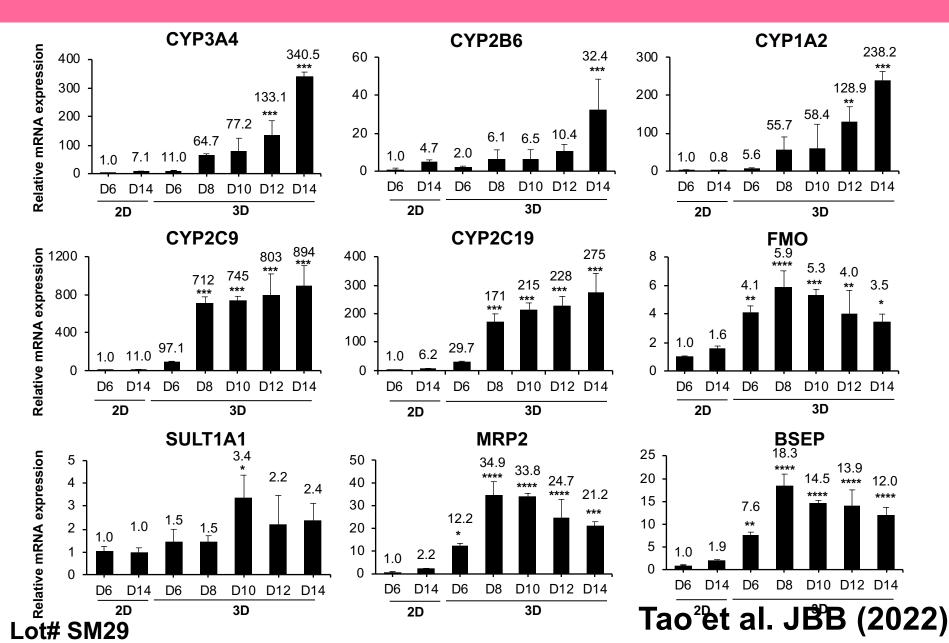
細胞接着力に関係なく凝集

凍結ヒトiPSC由来肝細胞様肝細胞

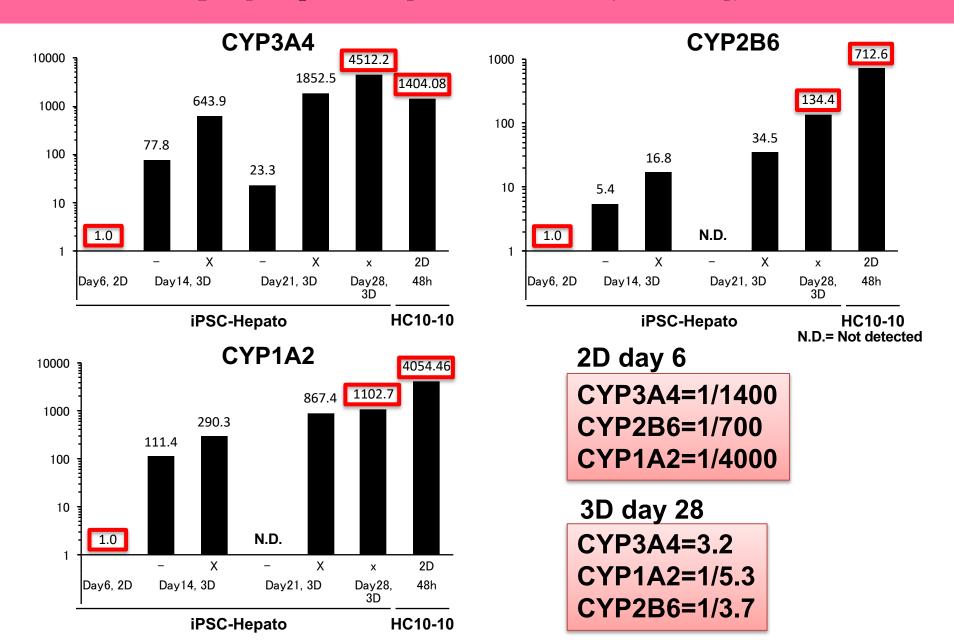
1 h 12 h 24 h し成プレー 3% MC

Tao et al. JBB (2022)

各種マーカー遺伝子の発現


		1	2	3	4	5	6	7	8	9	10	11
Α	Gene	NANOG	GRB7	GSC	CYP3A7	ASGR1	TAT	NR1I2	CYP2A6	ABCC3	UGT1A1	ASS1
	Fold changes	0.68	0.71	5.90	11.39	3.86	10.41	15.14	34.30	3.18	84.45	4.86
В	Gene	POU5F1	IFITM1	NODAL	DLK1	KRT8	TF	NR1H3	CYP2C8	ABCG2	GSTA2	CPS1
	Fold changes	0.77	0.75	3D = N.D	0.55	0.33	3.25	2.06	16.11	1.30	3.63	5.82
С	Gene	SOX2	PODXL	FOXA2	PROX1	KRT18	TDO2	NR1H4	CYP2E1	SLC10A1	ATP5G1	NAGS
	Fold changes	0.35	0.29	0.82	1.31	0.37	6.06	3.18	2D = N.D.	0.54	0.74	10.63
D	Gene	CD9	TDGF1	SOX17	TBX3	FABP1	HHEX	RXRA	CYP2D6	SLC22A1	POLG	OTC
	Fold changes	1.39	1.24	0.48	2.03	4.92	0.99	1.80	9.06	8.34	0.62	2.66
	Gene	DNMT3B	ZFP42	CXCR4	SERPINA1	FGG	HNF1A	NR3C1	CYP3A4	SLC22A2	PPARGC1A	KRT19
E	Fold changes	0.23	0.13	0.13	1.78	8.06	1.28	0.63	109.14	2D = N.D.	0.59	0.79
F	Gene	GABRB3	SOX7	GATA4	AHSG	G6PC	HNF4A	PPARA	CYP7A1	SLCO1B1	UCP2	KRT7
	Fold changes	1.37	3D = N.D.	1.31	13.36	61.82	1.67	1.42	152.22	37.27	0.82	0.03
G	Gene	GAL	LAMB1	GATA6	ALB	PCK2	AHR	CYP1A1	ABCB4	SLCO1B3	ARG1	AQP1
	Fold changes	7.11	0.23	0.42	3.43	1.93	1.09	7.11	9.32	1.41	7.36	3D = N.D.
Н	Gene	GDF3	HNF1B	AFP	APOA4	RBP4	NR1I3	CYP1A2	ABCC1	SLCO2B1	ASL	HES1
	Fold changes	3D = N.D.	0.31	0.74	18.38	6.19	18.77	48.17	0.29	2.41	1.96	0.88

<mark>青</mark>: 発現減少 (0.5以下)、灰色: 変化なし (0.5より大きく2未満)、<mark>赤</mark>: 発現増大 (2以上)


黄色: 両サンプルもしくは一方のサンプルで検出不可

#PA25

凝集による代謝機能の向上

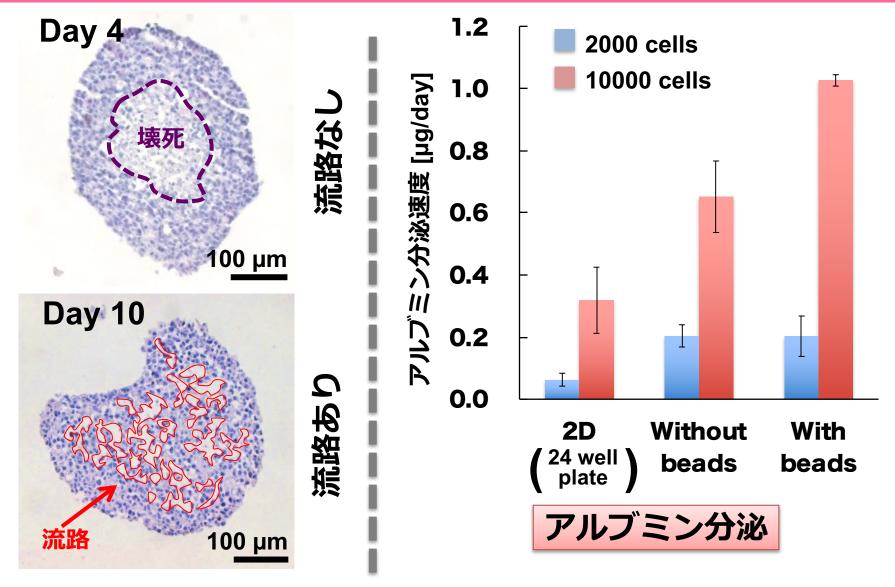
ヒト初代肝細胞レベルの機能

アジェンダ

- 1. 研究コンセプト
- 2. メチルセルロース法の紹介
- 3. hiPSC由来肝細胞の3次元培養
- 4. ユニークなスフェロイド

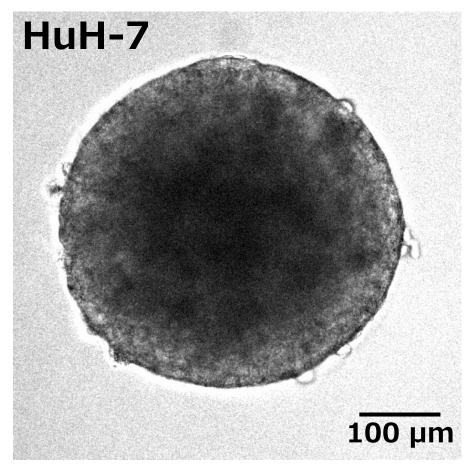
メチルセルロース法による粒子凝集

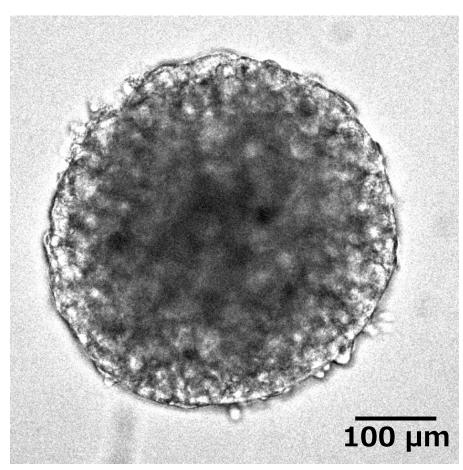
培地: 1 μΙ


細胞: 1000個

ゲルビーズ: 1000個

3% メチルセルロース培地

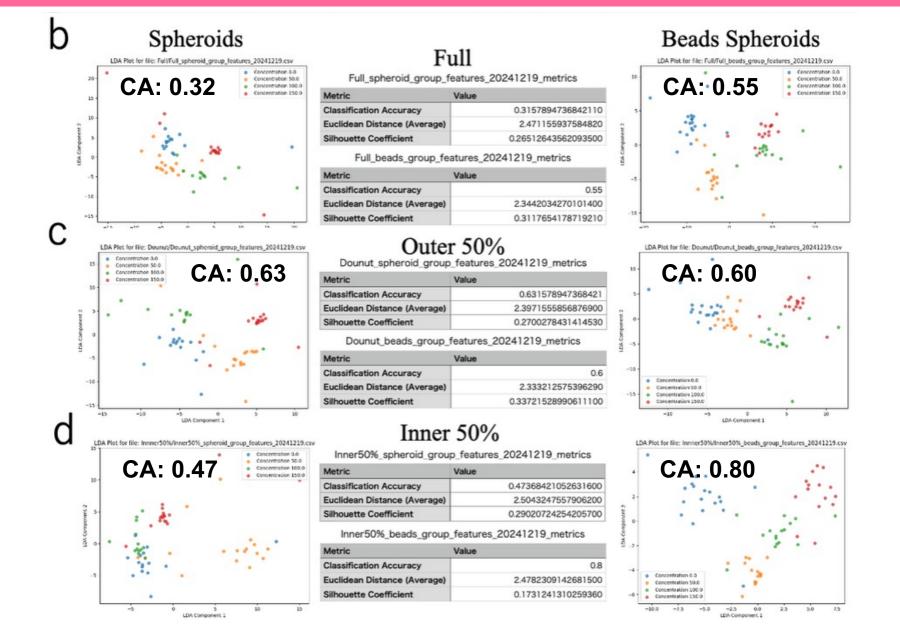

微小流路によって機能改善



Mihara et al. Cells (2019)

Kojima et al. Sensor Actuat B-Chem (2014)

Ninjaスフェロイド

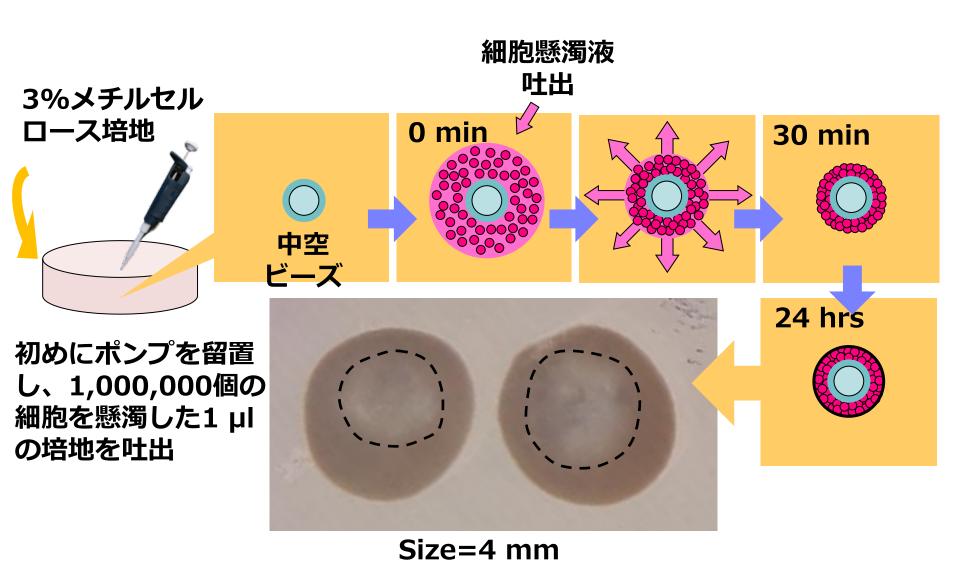


5000細胞のみ

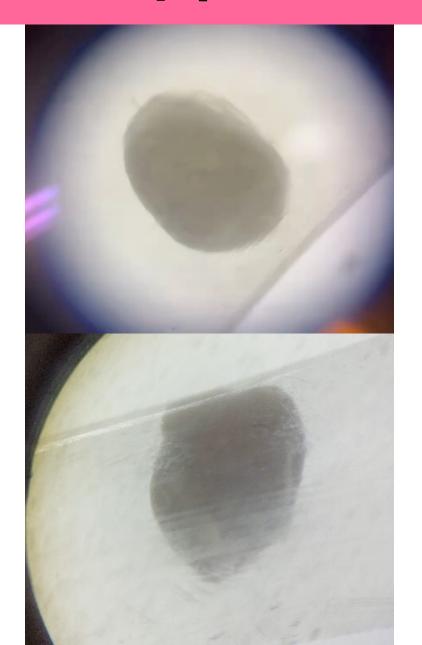
5000細胞+5000ビーズ

第17回マンダム動物実験代替法国際研究助成金採択

スフェロイド内部の情報に価値



中空ビーズ=ポンプ


中空ビーズの変形

ポンプを埋め込む方法

拍動するスフェロイド

まとめ

メチルセルロース法を用いることで・・・

- →強制的にスフェロイドを作製可能
- →凍結ヒトiPSC由来肝細胞の 代謝機能を向上させることが可能
- →ユニークで付加価値の高い スフェロイドもデザイン可能