2023.8.25 日化協LRI研究報告会

ヒトiPSレポーター細胞を用いたシグナル かく乱を指標とする発生毒性試験法

研究代表者 福田 淳二 横浜国立大学、KISTEC 共同研究者 大久保 佑亮 国立医薬品食品衛生研究所 共同研究者 中島 芳浩 産業技術総合研究所

催奇形性と発生毒性試験

胎児に暴露される種々の化学物質

サリドマイドによる悲劇

Rehman, W., Arfons, L. M. & Lazarus, H. M. *Ther. Adv. Hematol.* 2, 291 (2011)

発生毒性試験

× コスト・試験数 × 動物の犠牲(3Rs) × 種差

in vitro 発生毒性試験

O ハイスループット
O 動物実験代替
O ヒト細胞の利用

先行研究 (mEST* & Hand1-EST**)と本研究

*Baek, D. H. et al. J. Appl. Toxicol. 32, 617–626 (2012) **Suzuki, N. et al. Toxicol. Sci. 124, 460–471 (2011)

3

化学物質がシグナル伝達経路へ及ぼす影響を評価し、発生毒性物質を予測

本研究のアプローチ

ヒトにおける発生毒性物質を予測可能なスクリーニング法の開発

データ処理

S. Kanno, et al., *iScience*, 2022 S. Kanno, et al., *StarProtocol*, 2022 S. Kanno, et al., *JBB*, 2022

使用した化学物質

S. Kanno, et al., *iScience*, 2022 S. Kanno, et al., *StarProtocol*, 2022 S. Kanno, et al., *JBB*, 2022

ECVAM、ICHに記載の化学物質

発生毒性物質	非発生毒性物質
all-trans-Retinoic Acid (ATRA)	Acrylamide
Hydroxyurea	D-Camphor
Methotrexate Hydrate	Dimethyl Phthalate
Methoxyacetic Acid (MAA)	Diphenhydramine Hydrochloride
Methylmercuric Choloride (MeHg)	Penicillin G Sodium Salt
Sodium Salicylate	Sodium Saccharin
Valproic Acid	Acetaminophen
5-Fluorouracil	Amoxicillin
Cyclophosphamide (CPA)	Cimetidine
Imatinib	Erythromycin
Lenalidomide	Hydrochlorothiazide
Pomalidomide	Sulfasalazine
Thalidomide	

FGFシグナルかく乱試験の結果

リアルタイム発光測定による高精度検出

手作業による発光計測

リアルタイム発光測定装置

濃度依存的なシグナル攪乱ダイナミクス

リアルタイム発光測定装置

発生毒性物質(5-Fluorouracil)による攪乱

濃度依存的なシグナル攪乱ダイナミクス

リアルタイム発光測定装置

発生毒性物質(Valproic Acid)

非発生毒性物質(Cimetidine)

FGFシグナル以外のヒトiPSレポーター細胞株の樹立

バッテリ試験構築

WNT、SHH、BMP、TGF-bなどの レポーター細胞は樹立済み。

問題は、シグナルを刺激するリガンド探索。

国衛研・大久保

Native bFGFの安定性

Human Heat Stable bFGF

LR. Benington, et al., Pharmaceutics, 2021

Thermo Fisher

WntシグナルiPSレポーター細胞

Afamin-Wnt3aとR-spondin-3の組み合わせ

まとめと今後

1)リアルタイム発光測定により、詳細なカイネティックアッセイができることを示した。 2)Wntシグナルレポーター細胞を樹立し、使用可能なリガンドを見出した。

その他の研究計画

胚葉分化細胞を用いたレポーターアッセイ 未分化iPS細胞では、レセプターの発現そのものが 低い場合がある。そこで、3胚葉程度まで分化誘導 する。または胚様体の形成させる。

<u>多色化による内部標準の利用</u> 被験物質による試験系自体への影響(例:ルシ フェラーゼ活性の阻害)を検出し、実験アーティ ファクトを排除する。

<u>シグナルネットワークの解</u> <u>折</u> この試験法の分子メカニ ズムをより詳細に理解する ため、トランスクリプトー ム解析を行う

ム解析を行う。

M. Cloutier, E. Wang. Integr Biol. 2011