ヒトiPSレポーター細胞を用いたシグナルかく乱を指標とする発生毒性試験法

研究代表者 福田 淳二 横浜国立大学、KISTEC

共同研究者 大久保 佑亮 国立医薬品食品衛生研究所

共同研究者 中島 芳浩 産業技術総合研究所

催奇形性と発生毒性試験

胎児に暴露される種々の化学物質

サリドマイドによる悲劇

Rehman, W., Arfons, L. M. & Lazarus, H. M. *Ther. Adv. Hematol.* 2, 291 (2011)

発生毒性試験

- × コスト・試験数
- × 動物の犠牲(3Rs)
- ×種差

in vitro 発生毒性試験

MPS, Body on a chip

- 〇 ハイスループット
- 〇 動物実験代替
- 〇ヒト細胞の利用

先行研究 (mEST* & Hand1-EST**)と本研究

*Baek, D. H. et al. J. Appl. Toxicol. 32, 617–626 (2012) **Suzuki, N. et al. Toxicol. Sci. 124, 460–471 (2011)

化学物質がシグナル伝達経路へ及ぼす影響を評価し、発生毒性物質を予測

本研究のアプローチ

ヒトにおける発生毒性物質を予測可能なスクリーニング法の開発

データ処理

- S. Kanno, et al., *iScience*, 2022
- S. Kanno, et al., *StarProtocol*, 2022
- S. Kanno, et al., *JBB*, 2022

使用した化学物質

- S. Kanno, et al., *iScience*, 2022
- S. Kanno, et al., *StarProtocol*, 2022
- S. Kanno, et al., *JBB*, 2022

ECVAM、ICHに記載の化学物質

発生毒性物質	非発生毒性物質
all-trans-Retinoic Acid (ATRA)	Acrylamide
Hydroxyurea	D-Camphor
Methotrexate Hydrate	Dimethyl Phthalate
Methoxyacetic Acid (MAA)	Diphenhydramine Hydrochloride
Methylmercuric Choloride (MeHg)	Penicillin G Sodium Salt
Sodium Salicylate	Sodium Saccharin
Valproic Acid	Acetaminophen
5-Fluorouracil	Amoxicillin
Cyclophosphamide (CPA)	Cimetidine
Imatinib	Erythromycin
Lenalidomide	Hydrochlorothiazide
Pomalidomide	Sulfasalazine
Thalidomide	

FGFシグナルかく乱試験の結果

リアルタイム発光測定による高精度検出

手作業による発光計測

リアルタイム発光測定装置

産総研・中島

濃度依存的なシグナル攪乱ダイナミクス

手作業による発光計測

リアルタイム発光測定装置

発生毒性物質(5-Fluorouracil)による攪乱

Time (h)

濃度依存的なシグナル攪乱ダイナミクス

リアルタイム発光測定装置

発生毒性物質(Valproic Acid)

非発生毒性物質(Cimetidine)

FGFシグナル以外のヒトiPSレポーター細胞株の樹立

バッテリ試験構築

WNT、SHH、BMP、TGF-bなどのレポーター細胞は樹立済み。

問題は、シグナルを刺激するリガンド探索。

国衛研・大久保

Native bFGFの安定性

Human Heat Stable bFGF

LR. Benington, et al., Pharmaceutics, 2021

Thermo Fisher

WntシグナルiPSレポーター細胞

Afamin-Wnt3aとR-spondin-3の組み合わせ

まとめと今後

- 1)リアルタイム発光測定により、詳細なカイネティックアッセイができることを示した。 2)Wntシグナルレポーター細胞を樹立し、使用可能なリガンドを見出した。
- FGFシグナル以外のレポーター細胞の樹立 **WNT** 神経堤細胞 JWNT, 神経外胚葉 **BMP** 神経細胞 神経芽細胞 **FGF** SHH, **Epiblast** 外胚葉 **JBMP** TGF-β, **BMP** 表層外胚葉 FGF, Notch WNT, **BMP** 血管内皮細胞, VEGF, 造血細胞 IHH 皮筋板 中胚葉 WNT, **BMP** (真皮, 筋) SHH 心筋細胞 **SMAD** バッテリー試験法 FGF, **WNT FGF** 沿軸中胚葉 (骨,軟骨) 内胚葉 etc. .Wnt Annoanno 膵臓細胞 FGF, SMAD, TGFb **BMP** 肝細胞 腸管内胚葉 **WNT** FGF, SHH →農薬への適用

VEGF

その他の研究計画

胚葉分化細胞を用いたレポーターアッセイ

未分化iPS細胞では、レセプターの発現そのものが低い場合がある。そこで、3胚葉程度まで分化誘導する。または胚様体の形成させる。

<u>多色化による内部標準の利用</u>

被験物質による試験系自体への影響(例:ルシフェラーゼ活性の阻害)を検出し、実験アーティファクトを排除する。

<u>シグナルネットワー</u>クの<u>解</u> <u>析</u>

この試験法の分子メカニズムをより詳細に理解する ため、トランスクリプトー ム解析を行う。

